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1. [NTRODUCTION

Let/be a continuous function on the unit circle T: I Z: = 1. We consider
the arithmetic means of/

and

n

sn(f) = I/n L j(ei21rk/n),
k~l

n = 1,2,... ,

If f belongs to A, the space of all continuous functions g on T with the
Fourier coefficients an(g) = 0 for all n < 0, it is trivial that the holomorphic
extension F of/in the open unit disc U is determined by the values of/on
a dense subset of T. In this paper, we obtain the function F from the means
sn(f) of/on T:

00

F(z) = L {sn(f) - soc(f)} Pn(z) + soo(f),
n~l

(1)

Pn being some polynomial of degree n, assuming that the function f is
"smooth" (e.g., in CHE(T)). The coefficients r n(f) = sn(f) - soo(f), n ~ I,
and ro(f) = s",(f) are called the Riemann coefficients of / (cf. [2]). The
asymptotic similarities of rn(f) and the Fourier coefficients of f have been
pointed out in [3] and studied in [2]. The behavior of the series (1) is quite
peculiar; for instance, there exists a sequence {rn} such that rn = 0(1/n)
and the series L: rnPn(z) diverges everywhere inside the unit circle except
at the origin. Since the averages sn(g) of a function g on T do not give any
information about its odd part, we have to consider both sn(g) and sn(ag/aO)
in order to recapture g. Then we establish the existence and uniqueness of
a harmonic function u with prescribed means sn(u) and sn(uo) on T. Also,
we obtain some analogous results for the wave equations and heat equations
with prescribed mean initial values. Neumann problems are also considered.
Our representation theorem is also extended to the unit polydisc.
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2. REPRESENTATION OF HOLOMORPHIC FUNCTIONS
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For each E > 0, let B€ be the class of all continuous functions f on T
such that the Fourier coefficients Gn(f) of f on T satisfy Gn(f) = OOjn1+€).
The following theorem is obtained in [1].

THEOREM A. IffE An BJor some E > °and sn(f) = °for n = 1, 2, ... ,
then f is the zero function.

It is easy to show that for each n there exists a unique polynomial Pn of
degree n, leading coefficient equal to one, and Pn(O) = 0, such that
rm(P,.) = {)m.n, the Kronecker delta, m, n = 1,2, (cf. [1]). We also let
Po = 1. Hence, rm(Pn) = ()m.n for m, n = 0, 1,2, .

THEOREM 1. Letf E A n BJor some E > 0. Then the series L:~o rn(f) Pn(z)
converges uniformly to the holomorphic extension F off in U. Furthermore,
the following inequalities hold:

IF(z) - I rk(f) h(Z)! ~ M(S, f)jn a
k~O

for all n ? 1, () < E and I z I ~ 1, and

for all n ? 1 and I z I < 1.

We first prove the following lemma.

(2)

(3)

LEMMA 1. For n > 0, Pn(z) = Lk In !-t(njk) Zk. Here, as usual, kin means
that k is a factor of nand !-ten) is the Mobius function of n

if n = 1,
if n = ql ,... , qk ,
if p 2 I nfor some P > 1,

where ql ,... , qk are distinct primes.

To prove the lemma, we observe that for n ? 1,

if kin,
otherwise,
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and from the definition ofplI(z), we have

ric [L p;(z)J
1:11

if k! II,

otherwise.

Hence, in view of Theorem A, we can deduce that

ZlI = L p;(z)
jill

for n = 1,2,.... Now, apply the Mobius inversion theorem (cf. [4, p. 236])
to give

Pn(Z) = L fJ-(nfs) z"
sin

n = 1,2,... as asserted,
We can now prove Theorem 1. Let den) denote the number of distinct

divisors of n. It is well known (cf. [4]) that for each 0 > 0, den) ~ Cans for
some constant Caand all n. Hence, from the above lemma, we have

I pnCz)1 ~ L i fJ-(nfs) I ~ den) ~ Cana
81 n

(4)

for i Z I ~ 1 and 0 > 0. SincefE B" E 0, we can (cf. [2]) find a constant K
such that

(5)

for all n. Thus, by picking °< 0 < E, we can conclude that the series
L rnCf) Pn(z) converges uniformly on V to some function F, holomorphic
in U and continuous on V. As usual, let F* be the restriction of F on T.
Now, the Fourier coefficients of F* are

am(F*) = am (~o rnU) j~ fJ-(nfj) Zj)
cr·

= L rkmU) fJ-(k) ,
7.'~1

(6)

so that

I (F*) ~ K f I
am I 1c~1 (km )1+'

C
nl1+E '

Hence, both f and F* belong to A n BE' Furthermore, for each n = 0, I, ...

'x

= L r,lf) On,k = r nU),
7.'~O
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which implies sn(F* - f) = °for all n = 1,2,.... By Theorem A, F* = f
To prove (2) and (3), we use (4) and (5) to obtain

IF(z) - f rle(f) h(Z)! = I f rJcCf) h(z)1
k~O l.~n+l

00

:S; I (K/n1+<) C<_on E
-

a = C/na

"~n-I-l

for all [ z I :S; 1, and

IF(z) - I rif) h(Z) I :S; f
k~O k~n+l

r,,(f)! I I z Ii
ilk

s:: C[zl
"" 1 - I z I nE

for all I z I < 1. This completes the proof of Theorem 1.
As mentioned in the introduction, for a "smooth" function f on T, the

Riemann coefficients I'n(f) and the Fourier coefficients an(f) behave very
much alike as n tends to infinity. Hence, we would like to study the series

(7)

where {I'n} is a sequence of complex numbers. We shall call (7) a Riemann
series.

THEOREM 2. (i) If {I'n} is a sequence of complex numbers such that
L I I'n I dn < 00, then the series (7) converges uniformly on V to a function F
in A with Riemann coefficients I'n(F*) = rnfor all n.

(i') If I'n = O(l/n1+<) for some E > 0, then the above conclusion also
holds.

Oi) There exists a sequence I'n = O(l/n) such that the series (7) diverges
everywhere in U except at the origin.

(iii) For an integer q > 1 and L I rn I < 00, the series L rkPqk(z)
converges uniformly on V to a function F in A with Riemann coefficients
r,,(F*) = 1'" ifn = qk and rn(F*) = °otherwise.

(iv) Let {I'n} be a sequence of real numbers, monotonically decreasing
to zero, such that L rn log n < 00. Then the series (7) converges uniformly
on V.
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Parts (i), and hence (i'), follow easily from the proof of Theorem 1. For
the proof of (ii), we let

Then

\Lk
to

if k is a prime,
otherwise.

>-

I rkPk(Z) ~= I (ljk)(Zk - z)
1,~1 k prime

which is divergent for 0 < ! z < I. To prove (iii), we observe that

POk(Z)! = I ~_ fLCi) zr/,/j Ii

JI'/-

II fLCi) zqk /j I
jill j

I ! fLCi), Z d(q)
j!q

for ~I I z I z 1. Hence, since L ; rk I < 00, L r"pq,,(z) converges uniformly
on U to a function F in A as asserted. Here, the function F is uniquely
determined by the sequence {rk}' (cf. [1]). To prove (iv), we use summation
by parts to obtain that

r1 n-l

I rkPk(Z) = I Pk(z)(rk - rk- 1) + Pn(z) rn ,
k=2 k=2

(8)

where Pn(z) = P2(Z) + ... + Pn(z) for all n = 2, 3,.,., From (4) and [4],
we have

IP2(Z) + P3(Z) -+- ,.. -~- piz)] Z d(2) + ... + den)
z Cn In 11

(9)

for all 11 and ! z I z I, where C is some absolute constant. Combining (8)
and (9) gives

I kt2 rkPiz)! Z C [~~ (rk - rHl) k In k + rn/1 In 11J
n-l

= C L rk[k In k - (k - 1) In(k - 1)]
k~2

n-l
Z C' L rk In k,

k~2

which implies the convergence of L:;:o rkPk(z) on V. This completes the
proof of Theorem 2.
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3. MEAN BOUNDARY VALUE PROBLEMS
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In this section, we consider the mean boundary value problems and the
mean initial value problems for some elementary differential equations
Since every real-valued function f(l, 0) = f(e i9) on T can be decomposed
into a sum of an even function and an odd function:

we consider the even functions and odd functions separately.

THEOREM 3. (i) Let f(l, 0) be an even function in Cl+E(T) for some
E > O. Then f = 0 if the means sn(f) = 0 for n = 1,2,....

(ii) Let f(l, 0) be ann odd function defined on T. Then sn(f) = 0 for
all n.

To prove (i), we let
ex

f(l, 0) = I anei27Tn9.
n=-oo

Since f is even, we have an = a_n and hence

OCJ

o = sn(f) = 2 I akn -+- ao .
k=l

As f E CHE(T), we can conclude that an = O(l/nl+E) and

o = lim sn(f) = ao •
n->oo

Then it follows from the proof of Theorem A in [l] that f = O. To prove (ii),
we observe that iff is odd, then

snCf) = ~ i f(l, 27Tk) = ~ f f(l, 27T(n - k))
n k~l n n k~l n

1 n ( 27Tk )= - nIf l'-n- = -Sn,
k~l

which implies that sn(f) = 0 for all n.
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THEOREM 4. Let be a sequence of real numbers tending lOx lI'ilh
the rate :x,,-X 0(lln2I ')for some E - O. Then there exists a unique ecen
jill1ction u(r, 8) =c u(r, - 8) in CI "(0) for some E' 0 such that

Llu cc 0 in U

and

I '-'-- 2TTk .- I u (l, - _.) =, LX n
11 I,.~l ' n

j'oral/n =c 1,2,....

The uniqueness of the function u(r, 8) follows from Theorem 3. It IS

obvious that the following series

I (CY n --:x) un(r, 8) C\,

11=1

with un(r, 8) = I:kln p.,(nlk) r k cos k8, converges uniformly on 0 to a function
u(r, 8), whose Fourier coefficients an[u(1, 8)] can be estimated as follows:

an[u(1, 8)] = 1 I (:xl. - iX) [I p.,(klm) 8",rnJ+-:x8n.o
1.'=1 nt'j,;

= 1 I (lXkn - no) i ex8 n ,o
I:~l

= 0(1ln21 ').

Thus, we can conclude that u(r, 8) E Cl-,-"(O) for some E' O. It is obvious
that Llu = 0 in U and

Sn[u(1, 8)] = I (exk -- ex) Sn[U}l·(1, 8)] -+- ex
I,~l

I (ex}, -x) s,,[Re P7e(ei8)] -+- eX

!,,,--]

The proof of Theorem 4 is then completed.
Since the means snU) of an odd function f in CCT) are always zero, we

cannot expect to recapture the function f from the means snU). Hence,
we also consider the means of the tangential derivatives off on T.

THEOREM 5. (i) Let](1, 8) be an oddfunction in C2+'(T)for some E ~" O.
Thenf = 0 if the means of the tangential derivatives sn(oflo8) vanishfor all n.

(ii) Let](1, 8) be an even function in Cl(T) then sn(oflo8) = Ofor all n.
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This theorem follows from Theorem 3 by noting that aflaB is an even
function on T.

THEOREM 6. Let {Bn} be a sequence of real numbers satisfying
f3n = O(lJn2+€) for some E > O. Then there exists a unique odd function
vCr, B) = -vCr, -B) in C2+€'(U) for some E' > 0 such that

Llv = 0 in U

for all n = 1,2,....

The uniqueness of the function vCr, ()) follows from Theorem 5. It is
obvious that

converges uniformly to a function v in U, whose Fourier coefficients
an[v(l, B)] can be similarly estimated as above:

co

an[v(l, ())] = t I: f3kn . IJn
k~l

which implies that vCr, B) E C2+€'(U) for some E' > O. It can be easily shown
that vCr, B) satisfies the required conditions in the theorem.

Combining Theorem 4 and Theorem 6, we have the following theorem.

THEOREM 7. Let {cx n} and {f3n} be sequences of real numbers converging
to a and 0, respectively, with the rates CXn - a = O(lJn3+€) and f3n = O(lJn2+€)
for some E > O. Then there exists a unique function w(r, ()) in C 2+€'(U) for
some E' > 0 such that

Llw = 0 in U

1 n 2 kI: w (I, ~7T_) = an
n k=l n
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for all n = 1,2, .... Furthermore, the series

I (cx" -y) u,,(r. 8)
'1'1=1

I f3"l',,(r. 8) -,- '"
H=-1

converges uniformly to w(r, 8) on V. Here, lI" and I'" are trigonometric poly
nomials defined as above.

THEOREM 8. Let {O:n} and {f3n} be two sequences of real numbers tending
to zero with the rates O:n = O(l/n3+<) and f3n = O(l/n2+<) for some E > 0.
Then there exists a unique function u(r, 8) EO C3+<'(V) for some E' Osuch
that

L1u = °in U,

I n ( 27Tk)- I Uf I, -- = ex"
n l"~l n

~ f UrO (I, 27T
f

k ) = f3n
11 "'~l I

for all n = I, 2, ... , and u(O, 8) = 0.

From the rates of convergence of the sequences {cx"l and {f3n}, we can
conclude that the following series

ex; ( 11) 1'''' x ( n) 1'''' .I exn I flo T T cos k8 -+- I f3" I flo T k 2 Sill k8
n~l kin 1/~1 kin

converges uniformly to a function u(r, 8) EO C 3+<'(V) satisfying the required
conditions. To prove the uniqueness of u, we assume ex" = f3" = °for all
n = 1,2,.... Noting that rUr is a solution of the following problem:

L1w = °in U

and

we can conclude from Theorem 7 and the condition u(O, 8) = °that u = 0.
This completes the proof of the theorem.

THEOREM 9. Let {exn}, {f3n}, {Yn}, and {on} be sequences of real numbers
converging to 0:, 0, 0, and 0, respectively, with the rates cx" - cx = O(l/n3+'),
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fin = O(1ln2+<), Yn = O(1ln2+<), and On = O(1ln1+<), where E > O. Then there
exists a unique function u(x, t) in C2+<'(1R2) for some E' > 0 such that

82u 82u
8i2 8x2

'

n

lin L uU + kin, 0) = CX n ,
k=l

n

lin L uxCJ + kin, 0) = fin,
k~l

n

lin L UtU + kin, 0) =, Yn,
k~l

n

lin L UtxU + kin, 0) = On,
k~l

for all J = 0, ±I,... and n = 1,2,....

It is clear from the assumptions on {cxn}, {,Bn}, {Yn}, and {on} that the
following series

f (cx n - cx) L J1. (Z) cos 2kTrx cos 2kTrt + cx
n~l kin

00 ( n) sin 2kTTx+ L ,Bn L J1. k 2k cos 2kTTt
n~l kin TT

;:, " (n) COS 2kTTX .+ L.. Yn L.. J1. k 2kTT sm 2kTTt
n~l kin

~ " (n) sin 2kTTx .+ L.. On L.. J1. k 4k2 2 . sm 2kTTt
n~l kin TT

converges uniformly to a solution of the mean initial value problem with
the required smoothness condition. To prove the uniqueness, we let u and v
be two solutions of the mean initial value problem and define f on the unit
circle T by

f(e i211X) = u(x,O) - vex, 0)

for 0 ~ x ~ 1. Since u(O, 0) = u(1,O) = v(O, 0) = v(l, 0) and uxCO, 0) =
uxCI,O) = vx(O, 0) = vxCI, 0), we can conclude that the Fourier coefficients
an(f) off satisfy an(f) = 0(lln2+<'). Thus, f = °by a proof similar to the
proof of Theorem A. Similarly, we can conclude that u(x, 0) = vex, 0) for
all x and, hence, u(x, t) = vex, t) for all x and t.
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Also, we can obtain the following theorem for heat equations.

THEOREM 10. Let {cxrJ and {f3n} be two sequences oj'real numbers converging
to cx and 0, respectively, with the rates cx" - ex 0(I/n3~<) and f3n = O(I/n2+<)
for some E 0. Then there exists a unique solution for the following initial
value problem:

au
at for all (x, t) E (- 00, (0) X (0, (0),

for all n = I, 2, ... ,

for all n = I, 2, ... ,

u(x, 0) = u(x + I, 0) E C2+«IR).

Furthermore, the solution can be represented by the following series:

u(x, t) = cx + L (ex n - ex) L fL (Z) e-4
,,2k

2
t cos 27Tkx

n~1 kin

sin 27Tkx _4-;;2k 2t
27Tk e .

4. FINAL REMARKS AND EXTENSIONS

We first remark that the results in the first section can be generalized to
a polydisc. To do this we need the following lemma, which can be proved
by induction and an application of Theorem A.

for some E > 0. If the arithmetic means sn(f) off defined by

are all zero, where n = (n1 "", nN ), n1 '00" nN ~ 1, then f is identically equal
to zero.
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For a sequence of complex numbers Cn = Cn "'n ,if the limit of Cn , as
1 N

nj ,... , nj tend to infinity exists, we denote the limit by Cm ...m where mk = OCJ
1 1) 1 N

if k = jq, 1 ~ q ~ P, and mk = nk otherwise. We define a sequence of
polynomials Pn(z) = Pn1...nN

(Z1 ,... , ZN) where n1 ,... , nN ;?; 0 as follows:

Pm1···mk(Z1 ,... , Zk) = L
sl1m1

For a continuous function f on TN, the distinguished boundary of the unit
polydisc UN in the space of N complex variables, we define a sequence
rn(f) = rn1...n/f), which we call the Riemann coefficients off, by

if m1 = ... = mN = 0;

if mj;?; I;

where m/ = mj if mj =F 0 and m/ = OCJ if mj = 0 and where L1 is the sum
of the sm

1
' ...m

N
' with one noninfinity m/ replaced by infinity, 1 ~ j ~ N;

and more generally, Lk is the sum of the Sm ' ...m • with k noninfinity m/
1 N

replaced by infinity. By the above lemma and an extension of the proof of
Theorem I, we obtain the following theorem.

THEOREM 11. Let f E Cl+E(TN) for some E > 0 and rn(f) be the nth
Riemann coefficients off Then the series Ln rn(f) Pn(z), where n = (n1 ,... , nN)
with nj ;?; 0 for all j, converges uniformly on the closed unit polydisc UN to
a function F. Furthermore, iff admits an analytic continuation in UN, then
F=fon TN.

We also remark that in Theorem A we cannot in general move the roots
of unity. For instance, if we take zn,k = ei27rk /n, k = 1, ... , n, for n =F 2 and
Z2,l = Z2,2 = 1, then the function fez) = Z2 - Z satisfies sn(f) = 0 for all n.
As for a Jordan curve in the complex plane different from a circle, we can
take the means of a function at the conformal images of the roots of unity
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and results analogous to the case of the unit circle also follow. Finally, if
the Fourier series of the boundary values are known to be a lacunary series
(cf. [5]), we can relax some conditions in all the above theorems. For example.
in Theorem I, we need only assume L:~l GnU)! < (jJ instead of
GnU) = l/n1+< and obtain the theorem by using a result in [I] and an argu
ment similar to the proof of Theorem 2(iii).
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