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1. INTRODUCTION

Let f be a continuous function on the unit circle T: | z ' = 1. We consider
the arithmetic means of f

i) = Un 3 fl@mmy,  p=1,2,.,

and

5.(f) = lim s,(/).

If f belongs to A, the space of all continuous functions g on T with the
Fourier coefficients a,(g) = 0 for all n <C 0, it is trivial that the holomorphic
extension F of fin the open unit disc U is determined by the values of f on
a dense subset of T. In this paper, we obtain the function F from the means

so(fYof fon T:
F(z) = Zl {s2(f) — 5:()} Pul2) + 5:(f), (1)

p. being some polynomial of degree n, assuming that the function f is
“smooth” (e.g., in C*<(T)). The coefficients r,(f) = s,.(f) — s.(f), n =1,
and ry(f) = s.(f) are called the Riemann coefficients of f (cf. [2]). The
asymptotic similarities of r,(f) and the Fourier coefficients of f have been
pointed out in [3] and studied in [2]. The behavior of the series (1) is quite
peculiar; for instance, there exists a sequence {r,} such that r, = O(1/n)
and the series 3 r,p,(z) diverges everywhere inside the unit circle except
at the origin. Since the averages s,(g) of a function g on T do not give any
information about its odd part, we have to consider both s,(g) and s,(8g/26)
in order to recapture g. Then we establish the existence and uniqueness of
a harmonic function u with prescribed means s,(u«) and s,(u,) on 7. Also,
we obtain some analogous results for the wave equations and heat equations
with prescribed mean initial values. Neumann problems are also considered.
Our representation theorem is also extended to the unit polydisc.
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2. REPRESENTATION OF HOLOMORPHIC FUNCTIONS

For each € > 0, let B. be the class of all continuous functions f on T
such that the Fourier coefficients a,(f) of f on T satisfy a,(f) = O(1/nlte).
The following theorem is obtained in [1].

THEOREM A. If fe A N B, for some € >0 and s,(f) =0 forn=1, 2,..,
then f is the zero function.

It is easy to show that for each » there exists a unique polynomial p,, of
degree n, leading coefficient equal to one, and p,(0) = 0, such that
P Pw) = Opm.n » the Kronecker delta, m,n =1, 2,... (cf. [1]). We also let
po = 1. Hence, r,(p,) = 8,,., form,n=20,1,2,....

THEOREM 1. Letfe A N B, for some € > 0. Then the series Yo u(f) Pu(2)
converges uniformly to the holomorphic extension F of f in U. Furthermore,
the following inequalities hold:

n

|F&) = ¥ ) pu@)| < M, fyjme @

k=0

foralln=>1,8 <eand|z| <1, and

|70 — 3 nin ) < TE L G

! 1 —1lz| ne

foralln = 1and|z| < 1.

We first prove the following lemma.

LemMmA 1. For n > 0, p,(2) = 3, ulnfk) z*. Here, as usual, k | n means
that k is a factor of n and p(n) is the Mobius function of n

(1 if n=1,
l"(n) = (71)16 ’f‘ n=dq;,., 49,
0 if p?|nfor somep > 1,

where qy ,..., qr are distinct primes.

To prove the lemma, we observe that for n > 1,

ey — (L ki
BE2700 otherwise,
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and from the definition of p,(z), we have

) NI if ko
" [;} ‘nj(‘)} "o otherwise.

Hence, in view of Theorem A, we can deduce that

= z pAz)

Jjln
for n =1, 2,... . Now, apply the Mobius inversion theorem (cf. [4, p. 236])
to give

pulz) = 3 plnfs) 27,

s|n

n =1, 2,... as asserted.
We can now prove Theorem I. Let d(n) denote the number of distinct

divisors of n. It is well known (cf. [4]) that for each & > 0, d(n) << Cyn?® for
some constant Cy and all #n. Hence, from the above lemma, we have

| pa(2) < 3 | plnfs)} < d(n) << Con® 4)
s|n
for{z| < 1andé > 0. Since fe B, , € = 0, we can (cf. [2]) find a constant K

such that
| ra()l << Kfn'*e ()

for all n. Thus, by picking 0 << 8 < ¢, we can conclude that the series
S ru(f) pa(z) converges uniformly on U to some function F, holomorphic
in U and continuous on U. As usual, let F* be the restriction of F on T.
Now, the Fourier coefficients of F* are

0 (F) = a, (i ) Y 1)) zf)

n=0 jin (6)

o

= 2 rolf) pk),

k=1

s0 that

. — 1 C
*y o« K - =
| an(F¥)| = K lgl (km)t+e mlte

Hence, both f and F* belong to A N B, . Furthermore, for each n = 0, 1,...

o) = 10 (X 1) pi2)

k=0

= i rlc(f) 8n,k = rn(f)>
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which implies s,(F* — f) = 0 for all n =1, 2,... . By Theorem A, F* = f.
To prove (2) and (3), we use (4) and (5) to obtain

n

|F&) — ¥ nth pi)| =

o =0

S ) )

k=n+1

< Y (K9 Cogn? = Cln®

k=n-1

forall|z] <1, and

Fo— Y nhp@| < Y nHIY 20
Je=0 k=n41 ik
C|lz| 1
=1 — |zl o

for all | z| << 1. This completes the proof of Theorem 1.

As mentioned in the introduction, for a “smooth” function f on 7, the
Riemann coefficients r,(f) and the Fourier coefficients a,(f) behave very
much alike as » tends to infinity. Hence, we would like to study the series

o

Y. TaPu(2)s @)

n=0

where {r,} is a sequence of complex numbers. We shall call (7) a Riemann
series.

THEOREM 2. (i) If {r,} is a sequence of complex numbers such that
S | rald, < o0, then the series (7) converges uniformly on U to a function F
in A with Riemann coefficients r(F*) = r, for all n.

(i) If r, = O(1/n**) for some € > 0, then the above conclusion also
holds.

(if)y There exists a sequence r,, = O(1/n) such that the series (7) diverges
everywhere in U except at the origin.

(iliy For an integer q > 1 and Y |r,| < oo, the series 3. r,pg(z)
converges uniformly on U to a function F in A with Riemann coefficients
ro{F*) = r if n = g* and v, (F*) = O otherwise.

(iv) Let {r,} be a sequence of real numbers, monotonically decreasing
to zero, such that Y r,logn << co. Then the series (7) converges uniformly
onU.
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Parts (i), and hence (i’), follow easily from the proof of Theorem 1. For
the proof of (ii), we let
(LA if k£ 1s a prime,
I —
T otherwise.

Then

o

Y rpz) = Y (k)zk — z)

=1 L prime

which is divergent for O << | z | << |. To prove (iii), we observe that

Y )z '

ji’lk

5 iy |

il

<Y ), < dlg)

il

P2 =

for all | z| < 1. Hence, since 3. | ry | << 90, 3 . py(2) converges uniformly
on U to a function F in A as asserted. Here, the function F is uniquely
determined by the sequence {r;}, (cf. [1]). To prove (iv), we use summation
by parts to obtain that

n 7n—1

Y el = Y P (ry — 1) A+ Po(2) s ®)
k=2 T=2
where P,(z) = py(z) + -+ + pu(z) for all n = 2,3,.... From (4) and [4],
we have
po(2) + pylz) A pe(2) < d(2) + - A d(n) 9)
<L Cnlnn

for all » and | z | << 1, where C is some absolute constant. Combining (8)
and (9) gives

n

n-1
> ”kPk(Z)‘ <C [Z (ry — ) kInk + ranln n]
k=2

k=2

n—1

= C Y nkink — (k — 1) In(k — 1)]

n—1
<C ) rlnk,
k=2
which implies the convergence of Y o 7+Px(z) on U. This completes the
proof of Theorem 2.
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3. MeEaN BOUNDARY VALUE PROBLEMS

In this section, we consider the mean boundary value problems and the
mean initial value problems for some elementary differential equations
Since every real-valued function f(1, ) = f(e®®) on T can be decomposed
into a sum of an even function and an odd function:

O CVES (G CURS CaU

we consider the even functions and odd functions separately.

Traeorem 3. (i) Ler f(1,0) be an even function in CY<(T) for some
€ > 0. Then f = 0 if the means s,(f) =0 forn=1,2,....

(i) Let f(1,0) be ann odd function defined on T. Then s,(f) =0 for
all n.

To prove (i), we let

f(la 9) = z anei2nn9.

n=—ox

Since £ is even, we have a, = a_, and hence
o0
O:Sn(f)z 2 Z Qpn T 4y .
k=1

As fe C1+¢(T), we can conclude that a, = O(1/n'*<) and

0= lnlg s (f) =a,.

Then it follows from the proof of Theorem A in 1] that f = 0. To prove (ii),
we observe that if fis odd, then

su(f) = %é;f(l, 2"") :%é 7, Z_W("n;ﬁ)
— % élf(]’ *—iﬂk )
= ;li é ( 277k) — s

which implies that s,(f) = 0 for all n.
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THEOREM 4. Let {w,) be a sequence of real numbers tending 10 x with
the rate o, — x == O(1/n*'<) for some € - 0. Then there exists a uitique even
Junction u(r, 0) = u(r, —0) in C'<(U) for some € - 0 such that

Au=0in U

and

1 & 27k
PRIl

foralln=1,2,...

The uniqueness of the function u(r, 6) follows from Theorem 3. It is
obvious that the following series

Z (2, — 3‘) Hn(l’, 0) -+

n=1

with u,(r, 0) = 31, pnfk) r* cos k8, converges uniformly on U to a function
u(r, 0), whose Fourier coefficients a,[u(1, )] can be estimated as follows:

an[u(l 5 0)] =

Lo

/21 (=) [

Y wlkim) Syn| + 30y
mik

o

- % Z (‘\'kn - W) s agn,o

=1

= O(1/n?e).

Thus, we can conclude that u(r, 8) € C*+<(U) for some ¢ > 0. It is obvious
that du = 0 in U and

sl ] = 3 (o — ) sulill, B)] © o

k=L

- Z (0 — x) 5,[Re p(e?®)] + «

= Ay, .

The proof of Theorem 4 is then completed.

Since the means s,(f) of an odd function f in C(T) are always zero, we
cannot expect to recapture the function f from the means s,(f). Hence,
we also consider the means of the tangential derivatives of f on 7.

THEOREM 5. (i) Let f(1, 0) be an odd function in C*+<(T) for some € ~- 0.
Then f = 0 if the means of the tangential derivatives s,(2f |08) vanish for all n.

(iiy Let f(1, 0) be an even function in CX(T) then s,(cf [00) = O jor all n.
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This theorem follows from Theorem 3 by noting that ¢f /28 is an even
function on T.

THEOREM 6. Let {B,} be a sequence of real numbers satisfying
B, = O(/n**<) for some e > 0. Then there exists a unique odd function
o(r, 0) = —ov(r, —8) in C¥<(U) for some ¢ > 0 such that

dv=0in U

LS (25—,

k=1

foralln=1,2,...

The uniqueness of the function vo(r, 8) follows from Theorem 5. It is
obvious that

S 0= £ 8.3 0 (1) 7504

n=1 kln

converges uniformly to a function » in U, whose Fourier coefficients
a,[v(1, 8)] can be similarly estimated as above:

a,[e(1, 0)] = 1 Bkn " 1/n

IIM8

= O(1/n*+),

which implies that o(r, ) € C*+<'(U) for some € > 0. It can be easily shown
that v(r, 6) satisfies the required conditions in the theorem.
Combining Theorem 4 and Theorem 6, we have the following theorem.

THEOREM 7. Let {a,} and {B,} be sequences of real numbers converging
to o and 0, respectively, with the rates «,, — o = O(1/n*+) and B,, = O(1/n%+<)
Jor some € > 0. Then there exists a unique function w(r, 8) in C¥+<(U) for
some € > 0 such that

Aw =0in U
’1_1121 w (1, 2Zk ) = a,
L5l 25

640/10/4-3
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foralln =1, 2,... . Furthermore, the series

Z (O‘n - :“) un(r~ 0) = Z [-))nl.n(r- 9) Sl

n=1 n=1
converges uniformly to w(r, 8) on U. Here, u, and v, are trigonometric poly-
nomials defined as above.

THEOREM 8. Let {a,} and {B,} be two sequences of real numbers tending
to zero with the rates o, = O(1/n*<) and B, = O(1/n*¢) for some ¢ = 0.
Then there exists a unique function u(r, 8) € C3+<'(U) for some € =0 such
that

du = 0in U,

27k ) - a,

% ,;1 Ur (1’ n

| —

:B'Vl

2k )

7 ,;1 Uro (1’ h

~

foralln=1,2,..., and u(0, 6) = 0.

From the rates of convergence of the sequences {«,} and {f,}, we can
conclude that the following series

S ny rt . ny rto
Xn — ) 57 cos k8 + n —) 73 sin k6
Py :,‘;”(k) k P L%M(k)kz

converges uniformly to a function u(r, 8) € C3+<'(U) satisfying the required
conditions. To prove the uniqueness of u, we assume «, = 8, = 0 for all
n =1,2,... . Noting that ru, is a solution of the following problem:

Aw = 0in U

and

n

'1721 w155 :%é w (1L.275) =0

we can conclude from Theorem 7 and the condition (0, #) = 0 that 1 = 0.
This completes the proof of the theorem.

THEOREM 9. Let {«,}, {Bu}, {vn}, and {8,} be sequences of real numbers
converging to o, 0, 0, and 0, respectively, with the rates «,, — « = O(1/n3*9),
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B. = O(1/n?*9), y, = O(1/n?*<), and 8, = O(1/n**<), where € > 0. Then there
exists a unique function u(x, t) in C*+<'(R?) for some ¢ > 0 such that

Un Y. u(j + kjn, 0) = o,

k=1
l/l’l Z um(] + k/”ﬁ 0) = Bn ’
k=1
n Y udj + kjn, 0) = ya,
k=1
]/" Z utx(j + k/l’l, 0) = Sn s
k=1

Jorall j=0,4+1,...andn=1,2,...

It is clear from the assumptions on {o,}, {B,}, {y.},» and {&,} that the
following series

cos 2kmx cos 2kmt + «o

Z((x —(X)Z,u.(n

\—/

n=1 kin
d ny sin 2k7-rx
— cos 2kt
E W (k) T
Z (n) cos 2k77x sin Yot
n=1 Iln
i ( ) Slr;/fzkzx sin 2kt

converges uniformly to a solution of the mean initial value problem with
the required smoothness condition. To prove the uniqueness, we let # and v
be two solutions of the mean initial value problem and define f on the unit
circle 7 by

fe?®) = u(x, 0) — v(x, 0)

for 0 << x < 1. Since u(0,0) = u(1,0) = v(0, 0) = v(1,0) and u,(0,0) =
u(1, 0) = v,(0, 0) = v,(1, 0), we can conclude that the Fourier coefficients
a(f) of f satisfy a,(f) = O(1/n*+<"). Thus, f = 0 by a proof similar to the
proof of Theorem A. Similarly, we can conclude that u(x, 0) = v(x, 0) for
all x and, hence, u(x, t) = v(x, t) for all x and +.
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Also, we can obtain the following theorem for heat equations.

THEOREM 10. Let{x,} and{B,} be two sequences of real numbers converging
to o« and 0, respectively, with the rates o, — « == O(1/n*) and B, = O(1/n>+<)
for some € > 0. Then there exists a unique solution for the following initial
value problem:

- A2
8—‘; = j—x‘; forall (x,t) e (—o0, ©) x (0, ),
%éu (% 0) =, forall n=1,2, ..,

1 k
= (—,0) — B, forall n—=1,2,..,
u(x, 0) = u(x + 1, 0) € C*<(R).

Furthermore, the solution can be represented by the following series:

u(x, t) = o - Z (g — ) Y (%) e~ cos 2k x
n=1

k|n

i ny\ sin 27kx 0,2
X BT () T e

k|n

4. FINAL REMARKS AND EXTENSIONS

We first remark that the results in the first section can be generalized to
a polydisc. To do this we need the following lemma, which can be proved
by induction and an application of Theorem A.

LeMMA.  Let f(zy ..., Zy) = X Guooomy 217 *** 23N be such that

Qpyoeompy = O (W—I—WW)

for some € > 0. If the arithmetic means s,{f) of [ defined by

. 1 o W i2aky Iny 2k I nN
$af) = ——— Y Y. fle seees € )
LTS O s T ot

are all zero, where n = (ny ,..., ny), Hy ,..., iy = 1, then f is identically equal
to zero.
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For a sequence of complex numbers ¢, = Cryeromy » if the limit of ¢, , as
1 ..., n; tend to infinity exists, we denote the limit by [ where m, = o
if k=j,, 1<qg<p, and m, = n, otherwise. We define a sequence of
polynomials p,(z) = pr_...n (21 ..., Zy) Where ny ..., ny = 0 as follows:

Pryeeenpy(21 300y Zv) = 1 if m=-=ny=0
Pryengg0myiqengl(Z1 seees ZN) = Prgovomy_ymyygeoong(Z1 seees Zict s Ziga seees ZN)
my My \ s s
el = T % (2] v (2
1 .

sylmy Sk My

it my,..,m, =1, 1 <k<N,

For a continuous function f on 7V, the distinguished boundary of the unit
polydisc UY in the space of N complex variables, we define a sequence
ro(f) = r"r“"n(f)’ which we call the Riemann coefficients of f, by

Pngeeemn(f) = Sooeeo(f) if m =+ =my=0;
Foeeigmyo-o ) = Swvecommeroo ) — S f) it m; = 1;
r()...()mjo...(]mko...o(f) = sco"-com,-oo“wcmkao-uoo(f) - Soo-uooqu:n-so(f)

~ Seoeeemyeneeoo f) T S f) if m;,m, = 1;

rml---mN(f) = Sy eeemy” T 21: + 22: _
where m;" = m; if m; % 0 and m;” = oo if m; = 0 and where }, is the sum
of the s, /..., With one noninfinity m," replaced by infinity, 1 < j < N;
and more generally, 37, is the sum of the s,, ‘....,,» with k noninfinity m,’
replaced by infinity. By the above lemma and an extension of the proof of
Theorem 1, we obtain the following theorem.

THEOREM 11. Let fe CY(TN) for some € >0 and r,(f) be the nth
Riemann coefficients of f. Then the series ., r,(f) p.(2), where n = (ny ,..., ny)
with n; = 0 for all j, converges uniformly on the closed unit polydisc UN to

a function F. Furthermore, if [ admits an analytic continuation in U¥, then
F=fon TV,

We also remark that in Theorem A we cannot in general move the roots
of unity. For instance, if we take z, ; = e?™*/» k = 1,...,n, for n 7 2 and
Zy1 = Zps = 1, then the function f(z) = z? — z satisfies 5,(f) = 0 for all n.
As for a Jordan curve in the complex plane different from a circle, we can
take the means of a function at the conformal images of the roots of unity
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and results analogous to the case of the unit circle also follow. Finally, if
the Fourier series of the boundary values are known to be a lacunary series
(cf. [5]), we can relax some conditions in all the above theorems. For example.
in Theorem 1, we need only assume 3. _,!a,(f) < o instead of
a,(f) = 1/n**< and obtain the theorem by using a result in [1] and an argu-
ment similar to the proof of Theorem 2(iii).
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